“Metric” complexity for weakly chaotic systems
نویسندگان
چکیده
منابع مشابه
A ”metric” Complexity for Weakly Chaotic Systems
We consider the number of Bowen sets which are necessary to cover a large measure subset of the phase space. This introduce some complexity indicator characterizing different kind of (weakly) chaotic dynamics. Since in many systems its value is given by a sort of local entropy, this indicator is quite simple to be calculated. We give some example of calculation in nontrivial systems (interval e...
متن کاملOrbit complexity, initial data sensitivity and weakly chaotic dynamical systems
We give a definition of generalized indicators of sensitivity to initial conditions and orbit complexity (a measure of the information that is necessary to describe the orbit of a given point). The well known Ruelle-Pesin and Brin-Katok theorems, combined with Brudno’s theorem give a relation between initial data sensitivity and orbit complexity that is generalized in the present work. The gene...
متن کاملGlobal and local Complexity in weakly chaotic dynamical systems
In a topological dynamical system the complexity of an orbit is a measure of the amount of information (algorithmic information content) that is necessary to describe the orbit. This indicator is invariant up to topological conjugation. We consider this indicator of local complexity of the dynamics and provide different examples of its behavior, showing how it can be useful to characterize vari...
متن کاملChaotic and Arnold stripes in weakly chaotic Hamiltonian systems.
The dynamics in weakly chaotic Hamiltonian systems strongly depends on initial conditions (ICs) and little can be affirmed about generic behaviors. Using two distinct Hamiltonian systems, namely one particle in an open rectangular billiard and four particles globally coupled on a discrete lattice, we show that in these models, the transition from integrable motion to weak chaos emerges via chao...
متن کاملGeneralized dynamical entropies in weakly chaotic systems
A large class of technically non-chaotic systems, involving scatterings of light particles by flat surfaces with sharp boundaries, is nonetheless characterized by complex random looking motion in phase space. For these systems one may define a generalized, Tsallis type dynamical entropy that increases linearly with time. It characterizes a maximal gain of information about the system that incre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chaos: An Interdisciplinary Journal of Nonlinear Science
سال: 2007
ISSN: 1054-1500,1089-7682
DOI: 10.1063/1.2645274